Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids
نویسندگان
چکیده
This paper examines the room-temperature microstructure and mechanical properties of dispersion-strengthened-cast magnesium (DSC-Mg) containing 30 vol.% of 0.33 mm yttria dispersoids. The dispersoids are reasonably well distributed in both cast and extruded materials and the extruded matrix grains size is about 0.88 mm, in agreement with existing models on grain pinning. The Young’s modulus measured ultrasonically agrees well with the prediction of the Eshelby composite model. Premature failure in tension is observed in extruded DSC-Mg, due to casting porosities. In compression, strain softening after yield is observed in extruded DSC-Mg, which may be explained by the tension/compression asymmetry in wrought magnesium materials. Both cast and extruded DSC-Mg are much stronger in compression than most existing magnesium alloys and composites. The strengthening contributions from the dispersoids, grain boundaries and thermal mismatch dislocations are discussed. © 2000 Published by Elsevier Science S.A. All rights reserved.
منابع مشابه
Investigation of the mechanical properties of various yttria stabilized zirconia based thin films prepared by aqueous tape casting
In this study various yttria doped zirconia based thin films were prepared by the aqueous tape casting method. The rheological property of the paste was studies. The phase content and microstructure of the samples was investigated by X-ray diffraction and scanning electron microscope, respectively. The mechanical properties of thin films were studied by Vickers microhardness and nanoindentatio...
متن کاملComparison of the effect of chromium oxide and magnesium oxide on the mechanical properties and microstructure of alumina-mullite-zirconia composites
Alumina-mullite-zirconia composites were prepared by the reaction sintering method between alumina and zircon powders and the effect of two additives (chromium oxide and manganese oxide)were investigated on their properties. 2 and 4 wt% of each oxide were added to the raw material composition and after pressing, the samples were sintered at 1630°C. The results showed that chromium oxide decreas...
متن کاملEffect of Particle Volume Fraction on the Tensile Properties of Composite Al6061/SiC Materials by Hot Extrusion
In the present study the effect of phase volume fraction on the reinforcement of microstructure and tensile properties of composite extrusion process Al6061/SiC has been studied. For this purpose, the base alloy Al6061 using pure aluminum ingots, silicon, of Al-50% Mg, Al-10% Cr and a thin copper rod was prepared. Next, the composite Al6061/5% SiC, Al6061/10% SiC, Al6061/15% SiC and Al6061/20% ...
متن کاملGrain Refinement and Enhancement of Mechanical Properties of Hot Extruded Rare-Earth Containing Magnesium Alloy
The effects of rare earth addition and hot extrusion process on the grain refinement of magnesium alloy were studied. The as-cast Mg-6Al-1Zn (AZ61) alloy had the average grain size of ~ 64 µm and its microstructure consisted of α-Mg and Mg17Al12 phase. By partial substitution of Al with Gd to reach Mg-4.8Gd-1.2Al-1Zn alloy, it was observed that the Mg17Al12 phase disappeared and two new interme...
متن کاملMicrostructure, in Vitro Corrosion and Mechanical Properties of porous Magnesium-Zinc Nanocomposite Scaffolds
Due to good biocompatibility, corrosion and mechanical properties, magnesium (Mg) is considered promising degradable material for orthopedic applications. In this work, Mg-MgZnx (x= 1, 2, 3 and 4) nanocomposites scaffolds with different porosities were synthesized via powder metallurgy method. The microstructure, composition, in vitro corrosion and mechanical properties of porous magnesium-zinc...
متن کامل